LW–AB Components of Liquid Surface Tensions

Lifshitz-van der Waals/Lewis Acid–Base (LW–AB) Components of Liquid Surface Tensions

    \[  {{\gamma }_L={\gamma }^d_L+{\gamma }^P_L} \]

Liquid

Chemical Formula

Temperture

γLWL (mN/m) Van der waals

γ+L (mN/m) Acceptor

γL (mN/m) Donord

Reference

Water

H2O

20

26.85

22.975

22.975

[ 1 ]

21.8

25.5

25.5

[ 6,7 ]

30

26.85

22.218

22.218

[ 1 ]

37

21

24.55

24.55

[ 3 ]

40

26.85

21.461

21.461

[ 1 ]

44

20.6

24.15

24.15

[ 3 ]

70

19.3

22.6

22.6

[ 3 ]

95

17.9

21

21

[ 3 ]

Glycerol

C3H8O3

20

34

9.43

23.87

[ 1 ]

34

3.92

57.4

[ 6 ]

30

34

8.88

24.35

[ 1 ]

40

34

8.48

24.46

[ 1 ]

Ethylene glycol

C2H6O2

20

29

4.70

19.20

[ 1 ]

29

1.92

47

[ 6,7 ]

30

29

3.93

20.90

[ 1 ]

37

28.1

1.86

45.5

[ 3 ]

40

29

3.45

21.49

[ 1 ]

44

27.8

1.84

45

[ 3 ]

70

26.8

1.77

43.4

[ 3 ]

95

25.7

1.71

41.7

[ 3 ]

Formamide

C3H7NO

20

39

3.68

24.62

[ 1 ]

39

2.28

39.6

[ 6,7 ]

30

39

3.38

24.43

[ 1 ]

40

39

2.91

25.79

[ 1 ]

Diiodomethane

CH2I2

20

50.8

0

0

[ 1,4 ]

30

49.42

0

0

[ 1 ]

37

48.3

0

0

[ 3 ]

40

48.05

0

0

[ 1 ]

44

47.3

0

0

[ 3 ]

70

43.8

0

0

[ 3 ]

95

40.5

0

0

[ 3 ]

Tribromopropane

C3H5Br3

20

45.40

0

0

[ 1 ]

30

44.13

0

0

[ 1 ]

40

42.87

0

0

[ 1 ]

Bromonaphthalene

C10H7Br

20

44.40

0

0

[ 1 ]

43.5

0

0

[ 6 ]

30

43.42

0

0

[ 1 ]

40

42.44

0

0

[ 1 ]

Tetradecane

C14H13

20

26.6

0

0

[ 4 ]

Pentadecane

C15H32

20

27.07

0

0

[ 4 ]

Hexane

C6H14

20

18.4

0

0

[ 4 ]

Dimethyl sulfoxide

C2H6OS

20

32

0.5

32

[ 6 ]

Chloroform

CHCl3

20

27.15

3.8

0

[ 6 ]

References:

[ 1 ] Zdziennicka, A., Krawczyk, J., Szymczyk, K., & Jańczuk, B. (2017), Components and parameters of liquids and some polymers surface tension at different temperature, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 864–875

[ 2 ] Cantin, S., Bouteau, M., Benhabib, F., & Perrot, F. (2006), Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces: Comparison of different approaches, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276(1–3), 107–115

[ 3 ] Zhao, Q., Liu, Y., & Abel, E. W. (2004), Effect of temperature on the surface free energy of amorphous carbon films, Journal of Colloid and Interface Science, 280(1), 174–183

[ 4 ] Hwang, G., Lee, C. H., Ahn, I. S., & Mhin, B. J. (2011), Determination of reliable Lewis acid-base surface tension components of a solid in LW-AB approach, Journal of Industrial and Engineering Chemistry, 17(1), 125–129

[ 5 ] Ismail, M. F., Khorshidi, B., & Sadrzadeh, M. (2020), New insights into the prediction of adaptive wetting of a solid surface under a liquid medium, Applied Surface Science, 532

[ 6 ] Leó, V., Tusa, A., & Araujo, Y. C. (1999), Determination of the solid surface tensions I. The platinum case, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (Vol. 155)

[ 7 ] Köstler, S., Delgado, A. v., & Ribitsch, V. (2005), Surface thermodynamic properties of polyelectrolyte multilayers, Journal of Colloid and Interface Science, 286(1), 339–348

LW–AB Components of Liquid Surface Tensions

Leave a Reply

Your email address will not be published.